
Advances in Computing 2015, 5(1): 1-8

DOI: 10.5923/j.ac.20150501.01

Real Time Secure Video Transmission Using Multicore

CPUs and GPUs

K. Ganesan
1
, Jerin Geogy George

2,*
, Nithin P. V.

2

1TIFAC-CORE in Automotive Infotronics and School of Information Technology and Engineering, VIT University, Vellore, India
2TIFAC-CORE in Automotive Infotronics, VIT University, Vellore, India

Abstract The main difficulty in implementing security to real time videos is the processing time. Processing time is

considerably high while ensuring security using single core processors. This paper is analyzing the processing capability of

Multicore CPUs and GPUs to facilitate a secure video transmission. Six different techniques using spatial and frequency

domain are implemented using these systems. Adjacent frames are secured using different techniques to improve security.

The processed video is transmitted over LAN to a neighboring system to see whether a real time reproduction is possible or

not. The paper also compares the processing time for real time as well as stored videos, with varying resolution. In the case of

real time video security, GPU system was able to transmit 23 frames per second while single core CPU system was able to

transmit only 2 frames per second. Multicore CPU system with 8 cores was able to transmit 8 frames per second. The

resolution of the video transmitted was 320x240. When just security techniques were applied (video not transmitted) on a

stored video of resolution 640x480, the performance of GPU system was 38.3 times better than single core CPU system and

7.7 times better than multicore CPU system.

Keywords Video security, CUDA GPU, Multicore, Video processing

1. Introduction

Cryptography is a method of protecting the information

from undesirable persons by converting it into an

unrecognizable form. With the advent of smart phones,

tablets and other electronic gadgets, video calling is gaining

more popularity. Many airborne surveillance cameras are

being used for commercial as well as military purposes.

Massive accumulation of data invites users to store data in

cloud storage systems. In all these cases sensitive

information is being transmitted from one place to another.

Video-on-demand is another area where security is needed to

prevent unauthorized people from accessing the video.

Regarding the protection of video, which may be containing

many frames per second (fps), the two techniques that are

widely employed are scrambling and encryption. In

scrambling, the pixel values of the image are swapped

between the indexes whereas in encryption the pixel values

are modified with some algorithm. To avoid high processing

time normally scrambling is employed to provide protection

to videos. Standard encryption algorithms could provide

better security but at the cost of processing time [1, 2].

Parallel computing is a form of computing in which many

* Corresponding author:

jeringeogygeorge@amaljyothi.ac.in (Jerin Geogy George)

Published online at http://journal.sapub.org/ac

Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved

operations are carried out simultaneously. Since the

processing time has become an important factor in all

computations, parallel computing platform is getting wide

acceptance. Parallel computing platform can be based on

Central Processing Unit (CPU) or Graphics Processing Unit

(GPU). CPU based parallel computing can be accomplished

through Multi-core systems, Multiprocessors, Computer

clusters, Grid computers etc. GPUs are normally used for

video rendering and graphics enhancement. But now GPU

manufacturers have developed new platforms which enable

GPU for more general purpose usage, not just for graphics or

videos. Compute Unified Device Architecture (CUDA)

programming developed by NVIDIA facilitates the GPUs for

general purpose computing. Most of the modern computers,

smartphones, tablets etc. are having multiple cores and many

of them also contain GPUs. So the opportunity for parallel

computing in modern digital world is vast [3-5].

This paper studies the feasibility of using Multi-core

CPUs / GPUs to transmit a secure real time video and

reproduce it at the receiving end without considerable delay

and jitter. Different security techniques in spatial and

frequency domain are applied on adjacent frames in order to

improve the security. The paper conducts a comparative

study between the performance of single core CPU,

multicore CPUs and GPUs on the basis of the computation

performed. The computation is increased by increasing the

resolution of the video to be processed. The paper also

analyses the possibility of incorporating encryption

2 K. Ganesan et al.: Real Time Secure Video Transmission Using Multicore CPUs and GPUs

techniques to secure real time videos.

The organization of the paper is as follows: In Section II,

the methodology adopted for securing the videos using

parallel computing is elaborated in detail. In Section III, the

focus is on the results obtained. Finally, in section IV we

enumerate our conclusions.

2. Methodology

The major steps involved in the secure video transmission

are as follows.

 Capture a real time video or open a stored video.

 Extract each frame from the video.

 Scramble/encrypt the pixels in the frame using

Multicore CPUs / GPUs.

 Transmit the processed frame to the client.

 Unscramble/decrypt the pixels of the received frame.

 Display the frame in real time or save the frame into a

video file.

If the frames are displayed at a rate higher than the

persistence of vision then the video can be shown in real time.

This depends on both the transmission time and the

processing time. Video is transmitted from the server to the

client through Local Area Network (LAN) using socket

programming.

2.1. GPU Based Parallel Computing

In order to process the frames using Graphics Processing

Unit (GPU), Compute Unified Device Architecture (CUDA)

library functions are used in the code which is programmed

using C language. CUDA is a parallel computing platform

developed by NVIDIA for general purpose GPU computing

[6]. Image processing operations are performed using

OpenCV library functions.

CUDA program allows us to use both CPUs and GPUs in

one program. Part of the CUDA program written in C

language runs in the CPUs (Host). The other part of the

program runs in GPUs (Device) in parallel which is also

written in C language but with some extensions to express

parallelism. CUDA compiler compiles the code and splits it

into pieces to be run on CPUs and GPUs. CUDA considers

GPU as a coprocessor to the CPU with both of them having

separate memories. CPU runs the main program and controls

all the actions of GPU [6-8]. The major operations involved

in a CUDA program are

 Moving the data from CPU memory to GPU memory.

 Allocating GPU memory.

 Invoking programs (kernels) in GPU that compute in

parallel.

 Moving the data from GPU memory to CPU memory.

The part of the code which is to be parallelized using GPU

is written as a device kernel. The codes inside the kernel get

executed in parallel using multiple threads. The kernel is

written in such a way that only a single thread is executing at

a time. Kernel does not mention any thing about the level of

parallelism. The number of threads that should be executed

in a kernel is specified by the kernel call function. The

maximum number of threads and blocks that can be

scheduled depends on the compute capability of GPU. The

threads are arranged in blocks in order to obtain high

performance. The kernel is called from the host and is

executed in the device. Before calling the kernel the data

required for the operation is copied from the host memory to

the device memory. The device memory is allocated

according to the size of the data encountered. When the

device finishes the calculations, the result is copied back

from the device memory to the host memory. Thus the serial

portions of program are run on CPUs and the parallel

portions are run on GPUs [7, 8].

2.2. CPU Based Parallel Computing

In order to use parallelism using multiple cores, Open

Multiprocessor (OpenMP) library functions are used in the

code programmed using C language [3, 9]. Image processing

operations are performed using OpenCV library functions.

OpenMP facilitates only user defined parallelization. User

specifies the action to be taken by the compiler and system

runs the program in parallel. Some compiler directives are

used for this purpose. OpenMP constructs will not check for

data dependencies, data conflicts, race conditions, deadlocks

or any other situation that may give error output from the

program. User should use the constructs carefully to avoid all

these situations. Mainly, the parts of the code which contain

loops with high iteration are parallelized [9, 10].

OpenMP program begins with a single thread (main thread)

of execution. The parallel construct is added above the loop

body which is to be parallelized. When the main thread

encounters the parallel construct, it creates a team with

additional threads. The number of threads to be created is

mentioned in the construct [9]. The number of threads cannot

exceed the maximum number of logical processors in the

system. The task inside the parallel region is split among the

threads. Each of the thread has a thread private memory and

shared memory. At the end of the parallel construct only the

master thread resumes the execution. There is an implicit

barrier for all the other threads by the end of the construct [9,

10]. Only the loops that do not cause any data conflicts are

parallelized using the above mentioned method. All the

variables used inside the loop are also made independent in

order to avoid data dependencies.

2.3. Security Techniques

Different spatial and frequency domain techniques are

used to ensure security in the video. Adjacent frames are

secured with different techniques to improve security. If all

the frames in a video are secured using only a single

technique, then it is easy to crack the security measures. The

following are the various spatial and frequency domain

techniques employed to secure the image frames in the

video.

 Advances in Computing 2015, 5(1): 1-8 3

2.3.1. Arnold Transform

Arnold transform is used to scramble the pixels in a frame

in spatial domain. Arnold transform is a process of clipping,

splicing and realigning the pixel matrix of digital image. The

new indexes for the pixels are calculated using equation (1)

[11, 12].

x 1 1

1 2

x
mod N

y y

    
        

 (1)

Here, (x‟,y‟) is the new index, which is calculated from the

old index (x,y) and N is the size of the image matrix. If the

image matrix is not a square matrix, then zeros are padded to

make it as square matrix. By rearranging all the pixels to

their new index, the frame gets scrambled.

Arnold transform is widely employed in digital image

scrambling because of its periodicity. If the number of

iterations used for scrambling is S, then the number of

iterations to be used for unscrambling is (P-S). Here, P is the

period of Arnold transform and it depends on the size of the

image [11]. For each frame, the number of iterations (S) used

for scrambling is varied in order to improve the security. The

value of S is calculated from the pixels in the image frame.

This value is transmitted along with the secured video and is

used for unscrambling at the receiver side.

2.3.2. Cosine Transform Based Scrambling

The pixels in the frame are transformed into frequency

domain using discrete cosine transform. Two dimensional

discrete cosine transform is used for this purpose. The

general equation for a 2D cosine transform is defined by

equation (2) and equation (3) [13].

     

     

1 1
1 1

2 2

0 0

2 2
, . .

cos 2 1 cos 2 1 . .
2 2

N M

i j

F u v A i A j
N M

u v
i j f i j

N M

 

 

 

   
    
   

   
    

   

 
 (2)

Here,

 
1

0
2

1

for k
A K

otherwise




 



 (3)

Here, F(u,v) is the DCT coefficient and f(i,j) is the

intensity of pixel at row i and column j.

A matrix containing integer numbers in ascending order as

elements is scrambled using Arnold transform technique as

mentioned earlier. The number of iterations used for

scrambling is varied for each frame in order to improve

security. This scrambled matrix is threshold to generate a

matrix containing +1 and -1 as its elements. The matrix has

the same size as that of the frame size. This matrix is

multiplied with the matrix obtained by applying DCT to the

video frame. Then the inverse DCT is applied on the

obtained matrix. The new matrix obtained after IDCT is the

scrambled matrix [14].

The frames are split into 8x8 blocks to perform discrete

cosine transform. It has been found that in 8x8 blocks lots of

information can be dropped without creating acceptable

blocking artifacts [13, 15]. Selection of this size also

provides better performance. The matrix containing +1 and

-1 values is the key for unscrambling. If the same matrix

operations are repeated again then the frame will get

unscrambled.

2.3.3. Fourier Transform Based Scrambling

The pixels in the frame are converted into the frequency

domain by FFT. In this domain some alterations are

introduced and then the frame is converted back to the spatial

domain. Before applying FFT, the single channel video

frame is converted into two channel complex frame by

adding a separate channel consisting of zeros. This is done

because performing FFT will produce real values as well as

imaginary values. Added channel is then used to store the

imaginary values. The general equation for the 2D FFT used

is defined by equation (4) [16].

   
1 1

0 0

2

, ,
M N

M N

m n
j x y

M N
F x y f m n e


 

   
 

 

 

   (4)

Here, F(x, y) is the FFT coefficient and f(m, n) is the

intensity of pixel in row m and column n of the input image

frame.

After applying FFT, the magnitude and phase of each

matrix element is calculated. Then two matrices, namely,

magnitude matrix and phase matrix are generated. The

magnitude matrix is kept as the same but the phase matrix is

permuted using Arnold transform technique. The number of

iterations used for the permuting the phase matrix is

calculated from the pixels in the frame. The new phase

matrix is combined with the magnitude matrix to form the

complex matrix. The real channel obtained after applying

IFFT to the complex matrix gives the scrambled frame in the

time domain [17].

The number of iterations (S) used for scrambling is

transmitted along with the secured video and is used for

unscrambling at the receiver side.

2.3.4. Cipher Block Chaining Encryption

To encrypt the video using cipher block chaining, a look

up table is created. To create the look up table an 8

dimensional cat map is used. It is given by the equation (5)

and equation (6) [14, 18].

1

1

1

1

1

1

1

1

mod 256

n n

n n

n n

n n

n n

n n

n n

n n

A A

B B

C C

D D
A

E E

F F

G G

H H

















   
   
   
   
   
   

   
   
   
   
   
      

 (5)

4 K. Ganesan et al.: Real Time Secure Video Transmission Using Multicore CPUs and GPUs

Here,

1 7 33 125 403 1119 2591 4279

1 8 39 150 487 1356 3141 5182

1 7 34 130 421 1171 2712 4476

1 6 26 96 305 842 1948 3224

1 5 19 63 192 520 1200 2000

1 4 13 38 104 272 644 1056

1 3 8 20 48 112 256 448

1 2 4 8 16 32 64 128

A

 
 
 
 
 
 
 
 
 
 
 
  

 (6)

Here, 8 initial conditions namely A0, B0, C0, D0, E0, F0, G0,

and H0 are chosen. Equation (5) is applied repeatedly for 256

times to obtain 8 sequences of 256 unique set of values. Each

time the value of n is incremented by 1. Each time the value

of An is checked with its previous values. If the new value is

equal to any of the previous value, then the new value is

incremented till it is not equal to any of the previous values.

After 256 operations, the sequence A (A0, A1, A2,….A255)

will contain unique values. The sequence A along with its

index value is used for encryption.

The pixel in the frame is matched against the values in the

sequence A. There will be only one match since A contains

unique set of values. Then the pixel is replaced with the

index value of the matched value in sequence A. By doing

same operation on all pixels, the entire frame gets encrypted.

The same sequence can be used in reverse order to decrypt

the video frame.

2.4. Socket Program

Socket program is used to transmit the secure video from

the server system to the client system. Stream sockets which

rely on TCP protocol to establish reliable connection is used

for this purpose. The major steps involved in the data

transmission are the following [19].

 Create socket (stream socket) at both server and client

systems.

 Assign address to the sockets using bind function.

 Server listens to any connection request using listen

function.

 Client uses connect function to request for a connection.

 Server accepts the connection request using accept

function.

 Once the connection is established, send and receive

functions are used to transmit the data.

 Close function is used to stop the data transmission and

to close the connection.

Initially server and client systems are connected using a

LAN cable. A local network is also established between the

systems by manually setting the IP addresses.

2.5. Implementation

To ensure security, RGB image frames are captured from

the video. Then the three channel image is split into single

channel R, G and B images. Then each of these single

channel images is secured using one of the above mentioned

techniques. The technique used is decided by the image

frame number, N. N%6 is computed and the corresponding

security technique listed in Table 1 is applied.

Table 1. Security techniques

N%6 Security technique

0 Arnold transform

1 DCT scrambling

2 DFT scrambling

3 Cipher block chaining (CBC) encryption

4 CBC encryption + Arnold transform

5 CBC encryption + DCT scrambling

After applying the chosen security technique on the single

channel image frames, they are combined to form the RGB

image frame. This frame is transmitted to the client system

using socket program through LAN cable.

At the receiving end the same process is repeated to

reproduce the original image frame. The received secure

video as well as the reproduced original video is displayed in

real time using Open CV functions.

3. Results and Discussions

The techniques mentioned above were tested using both

real time and stored videos. The processing time for

Multi-core CPUs and GPUs were noted down. The same

techniques were employed by varying the resolution for both

the real time and stored videos. At the server and client side 2

Intel Xeon processors each with 4 cores (Total of 8 cores)

were used for multicore programming. The clock speed of

the processor is 2.4 GHz. For GPU programming, at the

server and client side TESLA C2050 GPUs with 448 cores

were used. The clock speed of the GPU processor used is

1.15 GHz. The double precision floating point performance

of TESLA C2050 is 515 Gflops. Its single precision floating

performance is 1.03 Tflops.

3.1. Sample Image Frames of Processed Video

The following figures show the sample image frames

obtained when various security techniques were applied on

the video.

Figure 2 and Figure 4 is seen as three different portions.

This is because of the memory coalescing technique applied

in Arnold transform scrambling and Fourier transform based

scrambling. Memory coalescing improves the processing

speed by minimizing the time spent on memory accesses [7].

Even though the secured video is seen as three portions, the

scrambling achieved is good. In Figure 3 and Figure 5 some

shades of the original image is seen. But they do not reveal

any information about the original image. When the cipher

block chaining (CBC) encryption was combined with the

cosine transform based scrambling, a completely

 Advances in Computing 2015, 5(1): 1-8 5

unrecognizable image was obtained. This is seen in Figure 7.

The combination of CBC encryption and Arnold transform

scrambling also gave a good secured video. Figure 6 shows

the image frame obtained on applying this technique.

Figure 1. Image frame of input video

Figure 2. Image frame of the scrambled video using Arnold Transform

Figure 3. Image frame of the scrambled video using Discrete Cosine

Transform

Figure 4. Image frame of the scrambled video using Discrete Fourier

Transform

Figure 5. Image frame of the encrypted video using Cipher Block

Chaining encryption

Figure 6. Image frame of the secured video using Cipher Block Chaining

encryption and Arnold Transform scrambling

Figure 7. Image frame of the secured video using Cipher Block Chaining

encryption and Discrete Cosine Transform scrambling

3.2. Comparison of Security Techniques

The frames are secured basically using three scrambling

techniques and an encryption technique. In the three

scrambling techniques employed, one is in time domain and

the other two is in frequency domain. Arnold transform

scrambling, the spatial domain technique, is not as strong as

the frequency domain techniques employed since there is no

domain shifting. Arnold transform scrambling is also a very

common digital image scrambling technique. But the

processing time for implementing this technique is low

compared to the other techniques.

DCT scrambling and DFT scrambling are the frequency

domain scrambling techniques used. Both techniques

involve a shifting from time domain to frequency domain.

But in DFT scrambling the image is converted into a two

6 K. Ganesan et al.: Real Time Secure Video Transmission Using Multicore CPUs and GPUs

channel complex frame which again is split into magnitude

and phase matrix. The scrambling is implemented by

permuting the phase matrix. In DCT scrambling the

scrambling is applied directly to the matrix obtain after

converting to the frequency domain. So DFT scrambling is

the secure technique comparing the two. But the processing

time for this technique is more compared to the other.

Scrambling involves just swapping of the pixels in a frame

while encryption modifies the pixels in the frame. So the

Cipher block chaining (CBC) encryption technique is far

more secure than the scrambling techniques employed, but at

the cost of processing time. In CBC encryption each pixel

level is replaced with a value that is calculated using a

complex algorithm. Hence the processing time is much more

compared to the scrambling techniques.

The last two techniques is a combination of the scrambling

techniques mentioned above. These two techniques are the

most secure techniques employed in this paper. CBC

encryption plus Arnold transform scrambling involves an

encryption and scrambling in time domain whereas CBC

encryption plus DCT scrambling involves an encryption in

time domain and then a scrambling in frequency domain.

3.3. Video Transmission

The secured video is transmitted to another system in the

network and the original video is reproduced in the client

system using single core CPU, multi core CPUs and GPUs.

The number of frames considered for experimentation was

100. The time delay added between consecutive frames have

small effect on the time taken by the systems listed in Table 2.

Figure 8 is a chart plotted using the time taken by the systems

listed in Table 2 in their respective order.

Table 2. Time taken for secure video transmission

Time taken by

CPU (1 thread)

Time taken by

CPUs (16 thread)

Time taken

by GPUs

Webcam

video
49526 ms 15029 ms 4542 ms

Stored

video
49156 ms 11762 ms 4384 ms

Figure 8. Performance comparison of the systems

GPU showed great speedup over single core CPU

when100 frames of secured video of resolution 320 X 240

were transmitted. 23 frames of secured video were

transmitted per second using GPUs whereas only 2 frames

were transmitted per second using single core CPU.

Multicore CPUs were able to transmit 8 frames of secured

video per second. It was also found that processing a video

taken from a camera takes more time than processing a

stored video. This was due to the delay caused by the

webcam to capture the frames.

3.4. Processing Time for Video with Different Resolution

In this case the security techniques were applied in the

similar manner, but the resolution of the video was varied

each time. This experiment was carried out in order to

analyse the performance variation of the systems when the

computation encountered by them was increased. Here only

the time taken for applying the security techniques was noted.

The number of frames considered was 100. Table 3 lists the

processing time taken by each system for different

resolutions. Figure 9 is a graph plotted using data in Table 3

to illustrate the performance variation when the computation

was increased.

Table 3. Processing time for different resolution

Time taken by

CPU (1 thread)

Time taken by

CPUs (16 thread)

Time taken

by GPUs

160 x 120 9687 ms 3449 ms 2028 ms

240 x 180 20717 ms 6303 ms 2028 ms

320 x 240 39986 ms 10265 ms 2044 ms

480 x 360 86751 ms 20280 ms 3307 ms

640 x 480 172888 ms 34679 ms 4508 ms

Figure 9. Processing time vs Resolution

It was observed that the processing time taken by GPU

remains constant for processing videos up to 320x240

resolution. Above this resolution, as the amount of

computation was increased, the processing times taken by

GPUs tend to increase. The time listed in Table 3 was also

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

160x120 240x180 320x240 480x360 640x480

 CPU(1
thread)

CPU(16
thread)

GPU

Resolution

Time

(ms)

 Advances in Computing 2015, 5(1): 1-8 7

affected by the delay given between each frames when they

were displayed as a video. So Table 3 and Figure 9 are more

suitable for a comparative study between the systems.

The performance improvement of GPUs over CPU can be

seen from the figure 9. As the computation was increased the

processing time taken by single core CPU had increased

exponentially. The processing time of multicore CPUs also

increased. But compared to single core CPU the processing

time of multicore CPUs increased at a slower rate. If the

processing time taken for the 640x480 video is analysed the

performance of a GPUs is about 38.3 times better than the

single core CPU and about 7.7 times better than the

multicore CPUs.

Table 4. Mean and standard deviation of the processing time for different
resolution

Resolution Mean Standard deviation

160 x 120 5055 ms 4074 ms

240 x 180 9683 ms 9792 ms

320 x 240 17432 ms 19960 ms

480 x 360 36779 ms 44101 ms

640 x 480 70692 ms 89781 ms

Table 4 gives the mean and standard deviation of the

processing time taken by the systems to process frames of

different resolution. It can be seen that as the resolution of

the frames was increased the standard deviation had

increased. This is due to the increasing difference in the

processing time between the three systems with the

resolution. This variation in the standard deviation values

gives a good idea about the performance of GPU over the

other systems, considering the amount of computation.

Amdahl‟s law was used to calculate the level of

parallelism achieved in the multicore program [20]. For

video with 640x480 resolution, about 91% of the code was

found to be parallelised. This amount was calculated,

considering the upper limit of speed up given by Amdahl‟s

law. Since the amount of parallelism available in the code

is above 90%, effective scalability is possible [20]. That

means better speedup can be achieved by increasing the

number of cores.

4. Conclusions

This paper analysed the processing capability of a

multicore CPUs and GPUs to facilitate secure video

transmission. Six different techniques in spatial and

frequency domain were implemented using these systems.

The secured video was transmitted over LAN to the

neighbouring system and a real time reproduction was

achieved.

The analysis proved that it is also not suitable to apply

encryption on video using single core systems. The

processing time was very high and it caused a lot of lag when

video is reproduced. But with the processing capability of

GPUs and multicore CPUs, encryption technique was

incorporated along with some scrambling techniques to

secure real time videos. The whole process was parallelised

using Tesla C2050 GPUs and Intel Xeon (8 core) CPUs.

Applying security on real time videos is very difficult [21].

Even applying a simple scrambling technique on a real time

video using single core system caused a lot of lag. With the

help of GPUs and multicore CPUs, security was applied on

real time videos. Parallelism using GPUs caused no lag

whereas using multicore CPUs caused small lag which was

very less compared to single core CPU. GPUs were able to

transmit 23 frames of secured video per second while

multicore CPUs transmitted 8 frames per second.

An increase in speed by about 11 times was achieved

using GPUs to that of single core CPU when security is

applied on real time video. Speed improvement of GPU over

8 cores CPUs was around 3.3 times in the same case. The

performance showed some difference when considering a

stored video. Speed improvement of GPUs over single core

CPU remained the same but only 2.7 times improvement was

observed for stored video processing using GPUs over

multicore CPUs.

GPUs also showed better performance as the amount of

computation was increased. Performance improvement was

only 4.8 times over single core CPU when processing 160x

120 image frames. But it became 38 times when the

resolution was changed to 640x480. So it can be concluded

that it is always better to process high resolution videos using

GPUs.

ACKNOWLEDGEMENTS

The authors, in particular Jerin Geogy George and Nithin

P V would like to acknowledge the TIFAC-CORE in

Automotive infotronics at VIT University, Vellore, India, for

providing the necessary hardware, software and technical

support in successfully implementing the present work.

REFERENCES

[1] Wenjun Lu, Avinash Varna, and Min Wu, 2011, Secure video
processing: problems and challenges, Acoustics, Speech and
Signal Processing (ICASSP), IEEE International Conference,
5856-5859.

[2] Jie Shen, 2009, Privacy-protection in real-time video
communication, Embedded Software and Systems, ICESS '09.
International Conference, 217-220.

[3] J. Reinders, 2007, Intel threading building blocks, O‟Reilly,
Media.

[4] Song Jun Park, 2009, An analysis of GPU parallel computing,
DoD High Performance Computing Modernization Program
Users Group Conference (HPCMP-UGC), 365-369.

[5] George R Desrochers, 1987, Principles of parallel and multi

8 K. Ganesan et al.: Real Time Secure Video Transmission Using Multicore CPUs and GPUs

processing, Intertext Publications, McGraw-Hill.

[6] NVIDIA, 2012, CUDA C programming guide PG-02829-
001_v5.0, http://docs.nvidia.com/cuda/cuda-c-programming-
guide.

[7] Thomas True, 2012, Best practices in GPU based video
processing, GPU technology conference, San Jose California.

[8] Pavel Karas, 2010, GPU acceleration of image processing
algorithms, Centre for Biomedical image analysis.

[9] OpenMP.org, 2006, The OpenMP API specification for
parallel programming, http://openmp.org.

[10] Ying Liu and Fuxiang Gao, 2010, Parallel implementations of
image Processing algorithms on multi-core, Fourth
International Conference on Genetic and Evolutionary
Computing, pp.71-74.

[11] Fei Chen, Kwok-wo Wong, Xiaofeng Liao and Tao Xiang,
1960, Period distribution of the generalized discrete Arnold
cat map for N=2e, Information Theory, IEEE Transactions,
Volume 59, Issue 5, 3249-3255.

[12] Mao-Yu Huang et al. 2010, Image encryption algorithm
based on chaotic maps, Computer Symposium (ICS),
International, Tainan.

[13] Anton Obukhov and Alexander Kharmalov, 2008, Discrete
cosine transform for 8x8 blocks with CUDA, NVIDIA.

[14] K. Ganesan, G. Harisha Reddy, Sindhura Tokala and
Raghava Monica Desur, 2013, Chaos based video security

using Multicore framework, American Journal of Computer
Architecture, 2(1): 1-7.

[15] Wenjun Zeng and Shawmin Lei, 2003, Efficient frequency
domain selective scrambling of digital video. IEEE
Transactions on Multimedia, Volume 5, issue 1, 118-129.

[16] L. Deng, Yu C L., Chakrabarti C. and Kim J, 2008, Efficient
image reconstruction using partial 2D Fourier transform,
Signal Processing Systems, SiPS, IEEE Workshop, 49-54.

[17] Arthur Gordon Mason, 1991, Video scrambling in frequency
domain, Patent EP0406017 A1, Reese, L. C., and Welch, R. C,
Lateral loading of deep foundations in stiff clay., J. Geotech.
Engrg. Div., 101(7), 633–649.

[18] K. Ganesan and S. Ganesh Babu, Chaos based image
encryption using 8D Cat Map (unpublished, private
communication).

[19] Ming Xue and Changjun Zhu, 2009, The socket programming
and software design for communication based on server/client,
Circuits, Communications and Systems, PACCS „09.
Pacific-Asia Conference, 775-777.

[20] Ami Marowka, 2012 “Extending Amdahl‟s law for
heterogeneous computing”, Parallel and Distributed
Processing with Applications (ISPA), IEEE 10th
International Symposium, 309-316.

[21] Gabor Feher, 2013, The price of secure mobile video
streaming, 27th International Conference on Advanced
Information Networking and Applications Workshops,
126-131.

